Как и почему появился HDR

Развитие дисплейных технологий приводит к тому, что потенциальные возможности телевизоров рано или поздно начинают значительно превосходить возможности каналов передачи телевизионного изображения. Сегодня одним из драйверов телевизионного рынка, призванных стимулировать зрителей к покупке новых телевизоров, наряду с 4K (UHDTV) являются технологии расширенного динамического диапазона яркости телевизионного сигнала HDR.

РАВНЕНИЕ НА ТЕЛЕВИЗОР!

Ситуации, когда технологические платформы вещания не соответствовали текущему уровню развития телевизоров, уже встречались в истории телевидения. Вспомним хотя бы конец 80-х — начало 90-х годов прошлого века, когда в мире стартовали проекты спутникового телевидения высокой четкости (ТВЧ) или, как говорят сегодня, HDTV-вещания. В Европе это были D2-MAC и HD-MAC, в Японии — система MUSE.

Так как во всех этих системах передавались телевизионные программы с форматом изображения 16:9, производители телевизоров в своих топовых моделях с размером экрана 28—32 дюйма начали массово переходить на широкий формат экрана. Соответственно, производители цветных кинескопов также закупили новое оборудование и перенастроили производственные линии под формат 16:9.

А дальше произошло непредвиденное: так как не удалось организовать массовое производство кинескопных HDTV-телевизоров, спутниковое вещание высокой четкости первого поколения в начале 90-х практически прекратилось. В результате перед производителями телевизоров встал вопрос: что теперь делать с широкими телевизорами, на которых стандартное для тех лет телевизионное изображение 4:3 воспроизводилось с черными полосами слева и справа? До второго пришествия HDTV, которое стало почти стандартом в наши дни, было еще очень далеко. Однако стараниями Sony, Philips, Grundig и Thomson эта проблема была решена в рекордно короткие сроки путем создания совместимой системы широкоэкранного телевидения PALplus в начале 90-х годов.

Техническое решение было удивительно простым и элегантным: вместо изображения формата 4:3 по эфиру передавалось широкоэкранное 16:9 в аналоговой системе PAL. Оно воспроизводилось без искажений на широкоэкранных телевизорах, но зато на квадратных кинескопах c экраном 4:3 при его воспроизведении были видны черные полосы сверху и снизу по 72 строки. Как говорится, клюв вытащили, а хвост увяз. Возникает резонный вопрос: а для чего нужно было вообще менять шило на мыло и от вертикальных черных полос в телевизорах 16:9 в «старом» PAL переходить к черным горизонтальным полосам в моделях 4:3 при передаче «широкого» PAL? А для того, чтобы открыть дорогу на рынок телевизорам с широким экраном, так как при воспроизведении изображения 16:9 их преимущества перед старыми моделями 4:3 становились очевидными и побуждали зрителей менять телевизоры. Таким образом телевизоры 4:3 постепенно вытеснялись из домохозяйств, и по истечении какого-то времени должен был произойти полный апгрейд парка абонентских устройств. Забегая вперед, отметим, что в конце концов так оно и произошло, так как сегодня модели с квадратным экраном встречаются все реже и реже.

Хотя на широкоэкранных моделях картинка при растягивании на всю высоту экрана воспроизводилась без искажений геометрии, она имела пониженную четкость. Чтобы восстановить исходное для PAL информационное разложение кадра до 576 строк, в составе телевизионного сигнала черных строк передавали дополнительный сигнал (как сказали бы сейчас, метаданные), helper, c информацией о потерянной в черных строках четкости. Обычные телевизоры этот сигнал не видели, а модели со специальным встроенным декодером выделяли helper и с его помощью синтезировали полноценное широкоэкранное изображение 16:9 с полной вертикальной четкостью 575 строк. Система передачи в системе PAL широкоэкранного сигнала с метаданными helper получила названия PALplus и позволяла получить на широкоэкранных телевизорах с декодером этой системы цветное изображение полной четкости.

Вот такое четкое изображение в формате 16:9 можно было видеть на экранах телевизоров PALplus

Как видим, на уровне развития телевизионной техники начала 90-х годов проблему улучшения картинки на новых телевизорах при обеспечении совместимости со старыми телевизорами удалось решить при помощи совместимой системы PALplus. Вещание в этой системе организовали ведущие европейские телевизионные компании, а крупные производители телевизоров начали серийный выпуск телевизоров PALplus. Правда, эта идиллия продлилась недолго — с началом цифрового телевизионного вещания DVB-T в Европе в 1996 году короткая история взлета и падения системы PALplus быстро завершилась.

ПО РЕЦЕПТАМ PALPLUS

Сегодня мы наблюдаем нечто подобное: современные модели LED (и особенно OLED) 4К-телевизоров способны обеспечить рекордную яркость изображения экрана, так как их видеомодули и схемы управления имеют 10-битовое управление яркостью экрана.

Это стало возможным благодаря прогрессу LCD-видеоматриц и, в частности, появлению технологии IPS, благодаря которым время переключения ячеек экрана резко сократилось. Соответственно, для управления быстрыми матрицами потребовались и более шустрые схемы драйверов с переходом от 8-битового к 10-битовому управлению переключением ячеек. Ну а матрицы OLED по определению имеют время переключения на порядки меньшее, поэтому в них изначально использовались 10- и даже 12-битовые схемы управления.

Большинство же каналов передачи кабельного и спутникового телевидения и IPTV до недавнего времени обеспечивали трансляцию и последующее воспроизведение телевизионных сигналов SDTV и HDTV только с разрядностью 8 бит. В то же время использование эффективной светодиодной подсветки LED-телевизоров, а также появление OLED-телевизоров позволило легко добиваться яркости свечения экрана в 350—450 кд/м². Однако при отображении 8-битовых программ на этих телевизорах не обеспечивается эффективное использование их более широкого динамического диапазона яркости.

Поэтому спустя 20 лет после разработки PALplus вновь сложилась революционная ситуация, когда для полноценной реализации возможностей новых телевизоров потребовалось обеспечить их улучшенным телевизионным сигналом. Даже переход к телевидению UHDTV (4K) первоначально предусматривал только увеличение количества элементов изображения на экране, но количество отображаемых градаций яркости видеосигнала составляло 256, то есть все те же 8 бит.

Компания Dolby Labs еще в 2012 году предложила на редкость элегантное решение этой задачи: увеличить динамический диапазон воспроизводимого современными телевизорами (а также смартфонами, планшетами и т. д.) изображения до 12 бит при помощи разработанной ее инженерами системы HDR Dolby Vision.

Дебютная идея системы во многом похожа на принципы, использованные в свое время в PALplus: для улучшения изображения на приемной стороне наряду с обычным совместимым телевизионным сигналом передаются дополнительные данные (метаданные), которые и позволяют синтезировать его улучшенный вариант.

Применительно к Dolby Vision эта идея выглядит следующим образом. В состав цифрового телевизионного сигнала, описывающего обычную картинку с диапазоном яркости 8 бит, добавляются специальные дополнительные сигналы — метаданные, которые позволяют увеличить яркость элементов экрана с 8 до 12 бит на пискель. Это позволяет обеспечить совместимость с моделями, не имеющими декодера Dolby Vision, которые воспроизводят только обычное 8-битовое изображение стандартной яркости. Зато телевизоры со встроенным декодером Dolby Vision при помощи метаданных могут восстановить исходную 10-битовую или даже 12-битовую картинку (эту опцию сегодня применяют главным образом в электронных кинотеатрах, а для бытового применения чаще используют 10 бит). Попутно увеличение разрешения до 10 бит для каждого из цветов RGB позволило получить «побочный эффект» в виде очень существенного расширения диапазона воспроизводимых цветовых оттенков изображения WCG (рекомендация ITU-R BT-2020). Поэтому яркая и сочная картинка HDR получается не только за счет яркости и контрастности изображения, но и за счет более широкого воспроизводимого цветового пространства.

Точно такой же принцип положен в основу большинства телевизионных систем с расширенным динамическим диапазоном HDR: наряду с обычным сигналом с динамическим диапазоном яркости 8 бит на пиксель передаются дополнительные метаданные, позволяющие с помощью декодера HDR увеличить его до 10 (HDR10, HDR 10+) или даже 12 бит (Dolby Vision). Исключение составляет система HLG, которая для расширения динамического диапазона яркости использует нелинейную гамма-коррекцию.

Принципиальным отличием систем HDR, помимо разрядности диапазона сигнала яркости 10 или 12 бит, является тип используемых метаданных, которые могут быть статическими или динамическими.

Статические метаданные описывают интегральные перепады яркости большого количества кадров, в то время как динамические могут изменяться вплоть до каждого отдельного кадра. Поэтому они точнее и реалистичнее «рисуют» картину с мгновенными перепадами яркости (HDR 10+ и Dolby Vision), но зато требуют более мощных процессоров декодера и сложнее в реализации.

Основные форматы HDR и поддерживающие их бренды

HDR-системы, в частности Dolby и HDR 10, поддерживают функцию перцептивного квантования. Как видно из рисунка, стандартный 8-битовый динамический диапазон сигнала яркости в зависимости от передаваемых метаданных может смещаться в сторону большей (яркие сцены) или меньшей (темные сцены) яркости экрана. В результате применения плавающей шкалы 8-битового окна яркости, при использовании стандартного канала передачи видеосигнала и метаданных, диапазон яркости воспроизводимых на экране телевизора с декодером HDR-изображений увеличивается до 10 и даже 12 бит.

ЕГО СИЯТЕЛЬСТВО HDR

В настоящее время большинство статей и рекламных материалов полны восторженных отзывов об изображении HDR, которое, согласно многочисленным тестам, зрители однозначно предпочитают обычной картинке. Еще бы, ведь даже яркость вспышки электросварки в популярной демонстрационной видеопрограмме HDR слепит совсем как в жизни. Так, что невольно хочется закрыть глаза. Что может быть лучшим доказательством эффективности новой технологии?

Здесь самое время вспомнить, что у любой медали всегда есть две стороны. Применительно к HDR второй стороной является побочный эффект повышенной нагрузки на зрение, который может сопровождать просмотр программ с широким диапазоном яркости. Вспомните, что даже телепрограммы с обычным яркостным диапазоном, верхняя граница которого редко превышает 150—180 кд/м², не рекомендуется смотреть более двух-трех часов в день. А теперь представьте, насколько возрастает нагрузка на глаза, когда темная сцена почти мгновенно сменяется ярким планом, на котором пиковая яркость в хорошем HDR-телевизоре может достигать 350—450 кд/м². По образному выражению, которое встретилось мне в Интернете, это почти то же самое, что посветить в глаз лазерной указкой. При этом если в реальной жизни такие перепады яркости случаются довольно редко (та же электросварка) и глаз вполне успевает адаптироваться к изменению освещения, то в кино сплошь и рядом после ночной сцены в следующем кадре мы видим уже сцену с ярким солнечным светом. А так как фильмы в системах домашнего кинотеатра смотрят, как правило, в затемненном помещении, сверхвысокая яркость HDR-телевизоров может создать зрителям определенные проблемы. Недаром же говорят, что недостатки зачастую являются продолжением достоинств.

Для того чтобы оценить размер бедствия, приведем классификацию HDR-дисплеев в зависимости от их пиковой яркости, которая изложена в принятой международной ассоциацией VESA в декабре 2017 года спецификации DisplayHDR CTS v1.0.

Спецификация предусматривает три вида HDR-дисплеев: DisplayHDR 400, DisplayHDR 600 и DisplayHDR 1000. В общем случае все три значения подразумевают максимально достижимую яркость экрана в кд/м². Таким образом, даже самый простой и бюджетный HDR-дисплей или телевизор может выдавать на экране яркость до 400 кд/м².

Эти замечания многим могут показаться надуманными, а сама проблема утомления глаз при длительном просмотре программ с расширенным яркостным диапазоном — несущественной и не заслуживающей внимания. Возможно, это и так, но не стоит забывать, что одной из причин безвременной и бесславной кончины 3D-телевизоров стало именно утомление зрителей от просмотра стереовидеопрограмм.

Впрочем, в Интернете эта тема уже активно обсуждается, и авторы ряда публикаций и статей дают простые и, на первый взгляд, весьма убедительные советы, как уберечь глаза от утомления. Наиболее очевидный совет — так настроить HDR-телевизор, чтобы он даже на пиках яркости не слепил глаза. Совет хороший, но он практически сводит на нет все преимущества новой технологии. Мне лично куда больше нравится предложение организовать достаточно интенсивную фоновую подсветку позади экрана телевизора. Она, с одной стороны, не отвлекает от просмотра программ и не засвечивает экран телевизора на темных сценах изображения. В то же время яркость подсветки должна быть достаточной, чтобы вывести глаз на «рабочий участок» его чувствительности, исключающей «засветку» при резкой смене яркости.

Таким образом, несмотря на то, что тема HDR сегодня очень популярна среди журналистов, пишущих о телевидении, и казалось бы, здесь трудно сказать что-то новое, на наш взгляд, имеется еще немало аспектов этой технологии, требующих дополнительного изучения.

 

 

Источник